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SUMMARY

A thin-tube vortex method is developed to investigate the intrinsic instability within a counter-rotating
vortex pair system and the e�ects from the core size and the wavenumbers (or wavelengths). The numer-
ical accuracy and the advantages of the scheme are theoretically estimated. A nearest-neighbour-image
method is employed in this three-dimensional vortex simulation. Agreement with Crow’s instability
analysis has been achieved numerically for the long-wave cases. A short-wave instability for the zeroth
radial mode of bending instability has also been found using the thin-tube vortex simulations. Then,
the combinations of long- and short-wave instability are investigated to elucidate the non-linear e�ects
due to the interactions of two di�erent modes. It is shown that instability is enhanced if both long- and
short-wave instabilities occur simultaneously. Although the method used in the paper is not capable of
including e�ects such as axial �ow, vortex core deformation and other complicated viscous e�ects, it
e�ectively predicts and clari�es the �rst-order factor that dominates the sinusoidal instability behaviour
in a vortex pair. Copyright ? 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Sinusoidal instabilities can be found, at various length scales, from coherent structures in
turbulence to aircraft wake vortices. In his well-known paper, Crow [1] investigated the mu-
tual and self-inductions under small perturbations in a pair of trailing vortices, using small
core (relative to the unperturbed vortex pair spacing), long-wave (relative to the vortex core
size) assumptions and linear stability analysis. The occurrence of sinusoidal instability (also
sometimes called the Crow instability after Crow) depends on the balance between the strain-
ing e�ects from mutual induction and the stabilizing e�ects from self-induction. The stability
diagrams developed in that study have been used as criteria for the Crow instability. Although
both long-wave and short-wave instabilities are shown in Crow’s analysis, it was pointed out

∗Correspondence to: Z. C. Zheng, Department of Mechanical and Nuclear Engineering, Kansas State University,
Manhattan, Kansas 66506-5205, U.S.A.

†E-mail: zzheng@ksu.edu

Copyright ? 2002 John Wiley & Sons, Ltd.



302 Z. C. ZHENG

later by Widnall et al. [2] that the short-wave results are spurious, because of the wavelength
limit.
Moore [3] extended the criteria for the symmetric mode to �nite amplitude waves and

found that Crow’s results were applicable nearly up to the point at which the two vortices
touched. Leonard [4] used a vortex �lament method to simulate an aircraft trailing vortex
pair, which was perturbed with a small random perturbation having a Kolmogoro� energy
spectrum. The Crow instability under atmospheric turbulence conditions has been studied by
many researchers, e.g., analytically by Crow and Bate [5], experimentally by Sarpkaya and
Daly [6] and, more recently, numerically by Spalart and Wray [7], Han et al. [8], Robins and
Delisi [9] and Zheng and Baek [10].
Thomas and Auerbach [11] observed the simultaneous development of a long- and a short-

wave instability mode in a vortex pair. The long wavelengths are in good agreement with the
classical symmetric long-wave bending mode identi�ed by Crow [1]. The developing short
waves appear to be less accurately described by the theoretical results by Widnall et al. [2].
Leweke and Williamson [12] investigated the instability to short waves of the order of the
vortex core size. They identi�ed this phenomenon as a manifestation of an elliptic instability
of the vortex cores. Orlandi et al. [13] used direct numerical simulations (DNS) to reproduce
results of the laboratory measurements by Leweke and Williamson [12]. Klein and Majda [14]
derived an asymptotic theory describing the non-linear dynamics of perturbed vortex pairs.
In contrast to linear theory, they found that in the non-linear regime of interaction, small
antisymmetric perturbations could have a dramatic e�ect on symmetric solutions. A superim-
posed small antisymmetric perturbation accelerated the nonlinear energy transfer signi�cantly
and led to an earlier critical solution with asymmetric behaviour.
There is rich literature on vortex ring sinusoidal instability which is related to vortex pair

instability. However, they are not discussed for the purpose of the topic covered in this paper.
Readers are referred to the papers by Shari� et al. [15] and Shari� and Leonard [16].
In this paper, a thin-tube vortex method with Rosenhead [17] core has been developed to

simulate the motion of a vortex pair undergoing sinusoidal disturbances. The construction of
a three-dimensional vortex �lament model starts with discretization of a slender vortex into
a �nite number of vortex elements. If only one numerical �lament is used instead of a collec-
tion of overlapping numerical �laments to approximate the vorticity �eld of one continuous
vortex structure, the resulting method is called the thin-tube vortex �lament method [18]. A
constant circulation along the �lament is speci�ed according to Kelvin and Helmholtz. In the
method used here, the core size is constant throughout the �lament and does not change with
time, since conservation of vorticity volume is not required. Therefore, the �lament vortic-
ity changes only due to local stretching and tilting of each vortex element. In this way, the
vorticity transport equation is implicitly accounted for [19].
In the developed numerical scheme, the vortex �lament is discretized into straight-line seg-

ments. Exact integrations are performed on each segment. The only error source during this
procedure is generated by using a straight line to approximate each vortex segment which
is a three-dimensional curve in general. If vortex stretching happens, the relative curvature
is reduced which can compensate for the errors due to longer segment lengths, thus no
points need to be added to reduce the error. On the other hand, when the vortex shrink-
ing occurs, the number of points automatically increases in the shrinking region to reduce
the errors caused by curvature e�ects due to the straight-line approximation for the vortex
segment.
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Periodicity in the axial direction of the vortex pair is another character of this problem.
The convective nature of the vortex pair prevents �nite periodic image truncations in the
calculation, since non-physical end e�ects increase with time. Strictly speaking, the Biot–
Savart evaluation of the velocity requires integration over all the periodic images in the
�ow�eld. Moore [3], Klein and Knio [19] and Wang [18] developed techniques to precalculate
the functions related to periodic images for discrete values using a large number of cut-o�
images. In the following calculation, a nearest-neighbour-image method [20; 21] has been
implemented to reduce the end e�ects caused by the �nite periodic images in the three-
dimensional vortex method. This approach has been proved to be e�ective in calculating
periodic �ow without being restricted to the format of the precalculated functions.
It should be pointed out that the algorithm developed in this study is not capable of including

e�ects such as axial �ow, vortex core deformation and other complicated viscous e�ects which,
the author agrees, are stringent issues in vortex dynamics. However, while unsteady three-
dimensional Navier–Stokes simulations are still su�ering from excessive numerical dissipation,
especially for vortical �ow predictions, the method used here does e�ectively include the
leading order e�ects that cause sinusoidal instability in a vortex pair. The two controlling
factors in sinusoidal instability, i.e., the mutual and self-inductions, are intrinsically inviscid
e�ects by all means. Therefore, it is necessary to clarify and fully understand the �rst-order
e�ects, before any more complicated factors can be brought into the picture.
In the following sections, the numerical scheme used in the calculation is described in

Section 2. The numerical accuracy and the advantages of the scheme are theoretically es-
timated. The descending speeds of two types of vortex structure are used to quantitatively
validate the scheme: a single vortex ring and a vortex pair without perturbation. The compu-
tational scheme is �rst used in Section 3 to calculate the dispersion relation for the thin-tube
vortex with a particular cut-o� function employed later in the long- and short-wave perturba-
tion computation. The development of long- and short-wave perturbations is then calculated
separately. The perturbations are initially speci�ed in displacement. The long-wave results
presented in Section 4 are basically for the purpose of comparison with Crow’s results for
veri�cation. In Section 5, the short-wave stable and unstable cases are simulated and discussed.
Finally, the combinations of long- and short-wave perturbations are simulated in Section 6.
Some nonlinear behaviour of combining two di�erent modes is addressed. Conclusions are
given in Section 7. In all the cases, only symmetric modes are considered because of the thin
core structure, as explained in Reference [3].

2. NUMERICAL METHODS

2.1. Numerical schemes

The analysis begins with the three-dimensional Biot–Savart integral with a cut-o�
function [22]:

ũ(̃x; t)= − 1
4�

M∑
m=1
�m

∫
(̃x − x̃ ′)× d̃s ′

|̃x − x̃ ′|3 f(̃x − x̃ ′) (1)

where �m is the circulation of the mth structure, M is the total number of structures in
the �ow �eld and the prime represents the dummy integral variables on each structure. The
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thin-tube assumption is implied by having one �lament integration on each structure. The
purpose of the cut-o� function is to desingularize the original Biot–Savart integration [17].
By using Rosenhead core, the cut-o� function can be expressed as

f
(
x̃
�

)
=

|̃x=�|3
(|̃x=�|2 + �)3=2

(2)

where � is a parameter related to the fraction of circulation within the core radius r=�. In
this paper, a Gaussian core distribution is selected and the corresponding � value is 0.413 [22].
If we discretize each three-dimensional vortical curve into small segments, for Lagrangian-

type motion of each node point, Equation (1) becomes

ũ(̃xi; t)= − 1
4�

M∑
m=1
�m

Nm∑
j=1

∫ j+1

j

(̃xi − x̃ ′)× d̃s ′
(|̃xi − x̃ ′|2 + ��2j )3=2

(3)

where Nm is the number of vortex segments on the mth vortical structure. We use a
three-dimensional line for each small segment, and the line equation is

x′ − xj
�xj

=
y′ − yj
�yj

=
z′ − zj
�zj

where �xj= xj+1−xj, �yj=yj+1−yj and �zj= zj+1− zj. Hence, if we project the integration
to the x direction, we have

d̃s ′=dx′
(̃
i +

�yj
�xj

j̃ +
�zj
�xj

k̃
)

and

x̃i − x̃ ′=(xi − x′)̃i +
[
(yi − yj)− �yj

�xj
(x′ − xj)

]
j̃ +

[
(zi − zj)− �zj

�xj
(x′ − xj)

]
k̃

Therefore, the following expression can be obtained for integration with respect to the x
direction:

ũ(̃xi; t) =− 1
2�

M∑
m=1
�m

Nm∑
j=1; j �=i; j+1�=i

Ãi + B̃j + Ck̃
4FD − E2

[
2Dx + E

(Dx2 + Ex + F)1=2

]xj+1

xj

(4)

where

A= (yi − yj)
�zj
�xj

− (zi − zj)
�yj
�xj

B= (zi − zj)− (xi − xj)
�zj
�xj

C = (xi − xj)
�yj
�xj

− (yi − yj)
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D=
(
�yj
�xj

)2
+

(
�zj
�xj

)2
+ 1

E =−2
[
xi +

�yj
�xj

(
yi − yj + xj

�yj
�xj

)

+
�zj
�xj

(
zi − zj + xj

�zj
�xj

)]

and

F =

[(
�yj
�xj

)2
+

(
�zj
�xj

)2]
x2j

+2
[
�yj
�xj

(yi − yj) +
�zj
�xj

(zi − zj)
]
xj

+(yi − yj)2 + (zi − zj)2 + x2i + ��2j

Equations for the y and z integrations can be obtained by permutating the x, y and z variables
accordingly. Notice that each straight-line element does not induce velocity on its own. Thus,
when the ith point coincides with either jth or (j+ 1)th point, which are the two end points
on the jth segment, the contribution from this segment is excluded. That is why in the second
summation in Equation (4) we have j �= i and j + 1 �= i. The Adams–Bashforth second-order
scheme is used for time marching, which can be expressed as

x̃i
n+1 = x̃i

n +�t
[
3
2
ũn(x̃i)− 1

2
ũn−1(x̃i)

]
(5)

where �t is the time step. The advantage of employing exact integrations in Equation (4)
will be discussed in detail in the next section.
Attention should be paid to the periodic boundary conditions used in the numerical schemes.

Since the �ow structure considered in this study is a pair of in�nitely long vortices, end ef-
fects have to be reduced if a vortex pair with �nite length is used in the simulation. Spatial
periodicity in the vortex longitudinal direction has been employed in Eulerian numerical sim-
ulations for sinusoidal, Crow-type instability of the vortex pair [8–10]. Because the periodic
boundary condition needs to be speci�ed at both ends of the longitudinal direction, the Biot–
Savart integration has to be carried over an in�nite number of periodic images. While this
can be done analytically in two dimensions [23], no such analytical expressions for the in-
�nite summation procedure in three dimensions are known [21]. A common approach is to
truncate the domain at a long enough distance where the end e�ects on the centre portion of
the domain become minimal and only the centre portion is selected for analysis. However,
in one of our early test cases for a problem involving a vortex pair, such an approach has
resulted in a structure shown in Figure 1, where the tails at the two ends are ampli�ed when
the time marching proceeds. Therefore, the nearest-neighbour-image concept, introduced by
Ashurst and Meiburg [20], is implemented. The concept can be illustrated by Figure 2, where
di�erent images of the segments are taken into account. For example, the vortex �lament
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Figure 1. End e�ects due to the downward motion of the vortex pair.

segment at xj0 and its periodic image at xj1, which is closer to xi than the other periodic
image at xj2, are taken for evaluating the velocity at point xi and the image at xj2 is not
taken. On the other hand, when the velocity at xk is evaluated, xj0 and its image at xj2, which
now is closer to xk than xj1, are used.

2.2. Accuracy analysis

A noticeable advantage of using the exact integration can be seen, instead of using a
summation of

ũ(̃x; t)= − 1
4�

M∑
m=1

Nm∑
j=1
�m
(̃xcm; j − x̃)× (̃xm; j+1 − x̃m; j)

|̃xcm; j − x̃|3 f
( |̃xcm; j − x̃|

�

)
(6)

where

x̃cm; j=
1
2
(̃xm; j + x̃m; j+1)

The accuracy of using the expression in the second summation in Equation (6) is
O(|̃xm; j+1− x̃m; j|2). Therefore, when the vortex stretching occurs, the accuracy becomes worse
and additional points need to be added in the stretched segment. A usual practice is every time
when |̃xm; j+1 − x̃m; j| is two times of its initial value, the segment is split into two segments.
In the current calculation, if the vortex stretching happens, the relative curvature is reduced
which can compensate for the errors due to longer segment lengths, thus no points need to be
added to reduce the errors. On the other hand, when vortex shrinking occurs, the number of
points automatically increases in the shrinking region to reduce the errors caused by curvature
e�ects due to the straight-line approximation for the vortex segment.

Copyright ? 2002 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2002; 39:301–324



SINUSOIDAL INSTABILITY IN A VORTEX PAIR 307

l

l

l

xj2

xk

xj0

xi

xj1

Figure 2. Illustration of the nearest-neighbour-image method by Ashurst and Meiburg [20],
where l is the simulation domain size.

In order to mathematically explain the above argument, we look at the integration in one
segment, as shown in Figure 3. Without losing generality of the argument, we can treat the
problem in two dimensions, and de�ne a functional as

I =
∫ �x=2

−�x=2
L(x; y) dx (7)

where

y=y(x)

is the integral path function of the integrand L. If the scheme as in Equation (6) is used, the
functional becomes

I1 =
∫ �x=2

−�x=2
L(0; y(0)) dx=L(0; yo)�x (8)
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Figure 3. Illustration of one integral segment.

If exact integration is performed on each line segment of the vortex �lament, we have

I2 =
∫ �x=2

−�x=2
L
(
x;

y2 − y1
�x

x +
y2 + y1
2

)
dx

= L
(
0;

y1 + y2
2

)
�x +

∫ �x=2

−�x=2

∞∑
1

1
n!

(
x
@
@x
+

y2 − y1
�x

x
@
@y

)n

L
(
0;

y1 + y2
2

)
dx

= L
(
0;

y1 + y2
2

)
�x +

∞∑
1

(�x)2n+1

22n(2n+ 1)!

(
@
@x
+

y2 − y1
�x

@
@y

)2n
L
(
0;

y1 + y2
2

)
(9)

where @=@x and @=@y mean to take derivatives for the �rst and second variables in L(x; y),
respectively. We further expand y1 and y2 at x=0, and I2 becomes

I2 = L(0; yo)�x

+(�x)3
[
Ly(0; yo)

4
y′′(0) +

Lxx(0; yo)
24

+
Lxy(0; yo)
12

y′(0) +
Lyy(0; yo)
24

(y′(0))2
]

+O((�x)5) (10)

In order to determine the accuracy of integration using I1 or I2, we use a second-order
polynomial curve to approximate the integral path. We then have

I3 =
∫ �x=2

−�x=2
L
(
x; y(0) + xy′(0) +

x2

2
y′′(0)

)
dx
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= L(0; yo)�x +
∫ �x=2

−�x=2

∞∑
1

1
n!

{
x
@
@x
+

[
xy′(0) +

x2

2
y′′(0)

]
@
@y

}n

L(0; yo) dx

= L(0; yo)�x

+(�x)3
[
Ly(0; yo)
24

y′′(0) +
Lxx(0; yo)
24

+
Lxy(0; yo)
12

y′(0) +
Lyy(0; yo)
24

(y′(0))2
]

+O((�x)5) (11)

In comparison of Equations (8) and (11), and Equations (10) and (11), it can be seen that
the integrations of both I1 and I2 have an accuracy of O((�x)3). However,

|I3 − I1|= (�x)3
∣∣∣∣Ly(0; yo)

24
y′′(0) +

Lxx(0; yo)
24

+
Lxy(0; yo)
12

y′(0) +
Lyy(0; yo)
24

(y′(0))2
∣∣∣∣

+O((�x)5)

while

|I3 − I2|=(�x)3
∣∣∣∣5Ly(0; yo)

24
y′′(0)

∣∣∣∣+O((�x)5)

Therefore, the di�erence in the two truncation errors is that the leading-order truncation error
in I2 is only in�uenced by y′′(0), which represents the curvature of the curve. If this error
is controlled at the initial time, then once there is stretching, the curvature becomes smaller,
thus curbs the growth of errors. If there is shrinking, then �x becomes smaller. Although
y′′(0) may increase during shrinking, the net errors can remain small. On the other hand, the
error in I1 also includes y′(0), which is not controlled by the algorithm, therefore �x has
to remain all time small, and adding points is required to split �x once �x is signi�cantly
prolonged. If the error of each term in a summation for integration is O((�x)3), the error of
the integration itself is O((�x)2), as in Equations (4) and (6).

2.3. Validation cases

Two test cases have been selected for validating the numerical scheme. The �rst one is a thin
vortex ring. This case has been historically used for validating vortex core smooth functions in
the cut-o� method and the resolution convergence requirement for the length of each element
of the ring �lament. The constant translational speed of the ring can be expressed as, in the
absence of viscosity [24],

V =
�
4�R

[
log

(
8R
�

)
+ C

]
(12)

where � is the circulation, the inner radius � is small in comparison with the outer radius R,
and the constant C depends on the distribution of vorticity within the ring. For the Gaussian
vorticity distribution, the value of C is −0:558. Non-dimensionalization was performed based
on � and R. The test case was run with the core radius equal to the ring inner radius, �=0:1.
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Figure 4. Relative error of the descending speed of the vortex pair versus the vortex segment length.

With this core size, the analytical value of the descending speed calculated from Equation (12)
is 0.3043. The computed descending speed values with segment lengths of 0.06, 0.03, 0.015
and 0.0075 are 0.2917, 0.3009, 0.3033 and 0.3039, respectively. Figure 4 graphically shows
the trend of the relative error change versus the segment length size. The errors can be as
low as O(10−3), when the segment length is smaller than 0.015 which is less than half of
the ring inner radius. This indicates that overlapping between neighbouring vortex elements
is necessary when there is curvature in the vortex �lament.
The second test case is an in�nitely long, straight-line vortex pair which translates due to

mutual induction. This case is used to verify the performance of the nearest-neighbour-image
method implemented in the numerical scheme and to determine the necessary number of
images required for the simulation. The result shows that at any instant, the vortex structure
remains straight lines. That means the method does not distort the vortex structure. The
translational speed of an in�nitely long vortex pair with cut-o� function has an analytical
solution:

V =
�
2�b

f
(
b
�

)
(13)

where � is the circulation of the vortex and b is the vortex pair spacing. For a Gaussian core
of radius 0.1, the dimensionless speed based on � and b is 0.1582. Test cases with �lament
lengths of 8, 16, 24 result in translational speed of 0.1537, 0.1573 and 0.1580. Therefore, it has
been concluded that for the nearest-neighbour-image method to achieve accuracy of O(10−3)
for the translational speed of the vortex pair, a minimum length of 24 vortex spacing is
necessary. The reason is that the in�uence of the vortex �lament of longer than that length
(plus its image lengths) can be neglected, although the in�uence is the sum of all the truncated
length. It should be noted that such a conclusion is only for the vortex pair structure, which is
the structure of the current problem. Other structures may result in di�erent length requirement
for the nearest-neighbour-image method simulation. In Reference [20], three images at each
end of the periodic boundary condition was suggested without giving detailed reasoning. It
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is also noted that in this test case, the size of each segment does not have in�uence on the
results simply because of the following three reasons: the translational speed is only caused by
mutual induction; the vortex structure is a straight line; and the exact integration, Equation (4),
along each segment line is calculated.
This is a non-trivial test case. Although the absolute translational speed does not in�uence

the stability behaviour of the vortex system, which is the zeroth order e�ect of the mutual
induction, the �rst order e�ect (due to the mutual induction from perturbed displacement of
one vortex to the other) cannot be estimated at this point and in order not to truncate the
�rst order e�ects, the zeroth order e�ect is used as an indication to investigate the in�uence
of the truncation of images.

3. DISPERSION RELATIONS

The computational method was �rst used to calculate a dispersion relation for a thin tube vor-
tex with the cut-o� function expressed in Equation (2). It was pointed out in Reference [2]
that in Crow’s analysis [1], the short-wave modes are spurious, due to the long-wave assump-
tions used in the analysis. The dispersion relation in Crow’s paper is the same as the one by
Kelvin [25] and is based on the asymptotic expansion of the solution for a ring which can
be expressed as

�= − (k�)2

4�

[
ln
1
k�
+
1
4
+ ln 2− �

]
(14)

where � is the normalized (by �=�2) rotating frequency of the sinusoidal disturbance due to
self-induction, � is Euler constant with a value of 0.5772, and k is the axial wave number.
Around the zero self-induction frequency is the region where the unstable sinusoidal wave
can possibly develop. Obviously, the �rst zero (at k�=0) is where the long-wave instability
occurs. The second zero point is at k�=1:44, according to Equation (14). This point is
claimed to be spurious, since it only happens when the asymptotic expansion for long-wave
(k��1) is performed to obtain Equation (14). There is a dispersion relation in Moore and
Sa�man [26] (which was originally from Krishnamoorthy [27]), when without axial �ow

g2

4�20 − g2

[
��

J ′
|p|(��)

J|p|(��)
+
2p�0

g

]
= − �|k|

K ′
|p|(|k|�)

K|p|(|k|�) (15)

where

g=−�+ p�0

�2 = k2(4�20 − g2)=g2

p is the azimuthal wave number, �0 is the vorticity of solid-body rotation of the undisturbed
vortex, and J|p| is the |p|th order Bessel function of the �rst kind and K|p| is the |p|th
order modi�ed Bessel function of the second kind. Widnall et al. [2] showed that for the
bending mode (when |p|=1, which is the mode related with sinusoidal perturbation) �
monotonically increases with k� starting with �=0 and k�=0 (the zeroth radial mode).
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Figure 5. Dispersion relations. The solid line is for the computed results using the
thin-tube vortex method, the dash line is the result from Equation (14), and the

dash-dot line is the result from Equation (15).

Therefore the second zero can never be reached. However, from Wang’s [18; 28] thin-tube
vortex simulations, a second zero frequency around k�=O(1) occurs for thin-tube vortices.
Although the shape and location of the second zero change with cut-o� functions used in
the simulations, all the shapes are similar and the locations of the second zeroes are close to
k�=O(1). The cut-o� functions tested in Reference [18] are

f(r) =

{
1; r¿1

r3; r61

f(r) = tanh(r3)

f(r) = 1 +
(
3
2
r3 − 1

)
exp(−r3)

f(r) = tanh(r3) +
3
2
r3

1
cosh2(r3)

(16)

In Wang’s results, the zero rotating frequency near k�=O(1) is at k� value between 1.5 and
2.5 for all the tested cut-o� functions listed in Equation (16).
The dispersion relation for using the cut-o� function in Equation (2) is numerically calcu-

lated and the result is plotted in Figure 5, along with the result from the long-wave asymptotic
expansion, Equation (14), and Moore and Sa�man’s [26] result, Equation (15). It should be
noted that in the thin-tube vortex simulation, the long-wave assumption is not enforced. The
only assumption is the thin-tube assumption, that is, the vortex core does not change its size
and structure during the simulations. It shows that a second zero of the rotating frequency is
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at k�=1:72, not too far away from the asymptotic expansion result. It needs to be pointed
out that Equation (15) is valid under the assumption that the core vorticity is constant, while
in the thin-tube vortex method the core vorticity changes due to the stretching and shrinking
of the vortex segment. Therefore, it can only be speculated that the di�erence in the dis-
persion relations between thin-tube vortex method and Equation (15) is due to the di�erent
assumptions made in each model. In Reference [12], a short-wave instability was measured
near k�=1:6. That instability, however, attributed to the vortex core deformation in Refer-
ence [12] which was related to a p=1 bending wave mode instead of a p=0 mode. The
�ow physics related to these phenomena has not yet been fully determined. In the following
two sections, the long and short-wave sinusoidal perturbations are simulated to investigate the
in�uence from the dispersion relation.

4. LONG-WAVE SINUSOIDAL PERTURBATIONS

The thin-tube vortex method developed in Section 2 is now used to simulate the vortex pair
undergoing sinusoidal perturbations. A pair of counter-rotating, straight line vortices is ini-
tially perturbed with a sinusoidal displacement. All the simulations are non-dimensionalized
using the vortex pair circulation, �, and the undisturbed spacing, b. The x direction is in
the axial direction of the vortex and the y and z directions are the span and vertical direc-
tions, respectively. The initial position of the vortex pair in the coordinate system is shown
in Figure 6. The initial disturbances are speci�ed as sinusoidal displacement in both the

0.5 0.5

y

z

_

Figure 6. The initial position of the vortex pair and the coordinate system used in the simulations.
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y and z directions,

D= am sin(kx) (17)

where am is the disturbance amplitude and k is the wave number. Since the y and z directions
are speci�ed with the same disturbances, the initial planar standing-wave angle, de�ned as
�= tan−1(amz=amy), is 45◦. Only the symmetric mode is simulated. Since the symmetry is
with respect to the y=0 plane, only the vortex in the y¿0 domain needs to be simulated
and the symmetry image is added for the e�ects from the vortex in the y¡0 part.
For the �rst case, a vortex pair with core radius of 0.1 is initially perturbed with a wave

number of k=0:75 and a displacement of am=0:05 as de�ned in Equation (17). The wave
number is corresponding to a wavelength of 8.38. The simulating �lament length is selected
as 8�, according to the vortex pair test case in the previous section which requires more than
24 vortex pair spacing. That includes three periodic waves in the simulation for the purpose of
checking periodicity. A total of 500 elements are initially distributed on the �lament uniformly
to satisfy the resolution requirement with the segment length less than half of the core radius.
The initial position of the simulated vortex is at y=0:5 and z=0, with the vortex axis
spanning from x= − 4� to x=4�. A time step size of 0.005 was used in the second-order
Adams–Bashforth time marching.
Figure 7 shows the time histories of the disturbance development for this case in the x–y

and x–z planes. The wave is actually stationary, since the rotating frequency is almost zero in
long-wave regimes, according to the dispersion relation in Figure 5. The disturbances in the
y and z directions are always in phase. The standing wave angle starts at 45◦. Because of the
uneven induction from the other vortex, which produces slightly stronger downward motion
on the portion of the wave close to each other, the planar standing-wave angle becomes about
60◦ at the end of the simulation (t=14).
It can be seen that towards the end of the simulation, the curvatures of the wave at the

closest part of the two vortices are increased, while those at the farthest are decreased. Such
a nonlinear e�ect has also been shown in the nonlinear analysis of Klein and Majda [14]. The
simulation was terminated at dimensionless time of 14, when the ymin in the waves almost
reaches 0.1, the vortex core radius. That means the closest points of the two vortices in the
vortex pair almost touch. After that, peculiar shapes of the waves occur, which obviously are
non-physical.
The amplitude grows with time exponentially. The amplitude versus time is plotted in

Figure 8. To compare with Crow’s prediction, the following de�nition of the ampli�cation
rate is utilized:

ln
am(t)
am(0)

= a∗t (18)

where a∗ is the ampli�cation rate. The instantaneous amplitude, am(t), is de�ned as

am(t)=
1
2

√
[ymax(t)− ymin(t)]2 + [zmax(t)− zmin(t)]2 (19)

In Reference [1], the ampli�cation rate for the symmetric modes has been derived as

a∗=
1
2�
[(1−  (k) + k2!)(1 + �(k)− k2!)]1=2 (20)
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(a) (b)

(d)(c)

Figure 7. Long-wave perturbation development histories for the case of k =0:75 and �=0:1. The
solid curve is for the y-direction component and the dashed curve is for the z-direction component.

(a) t=0, (b) t=4, (c) t=10, (d) t=14.

where  (k)= k2K0(k) + kK1(k), �(k)= kK1(k), and K0 and K1 are modi�ed Bessel functions
of the second kind, and ! is de�ned as

!(�)=
1
2
[(cos �− 1)=�2 + sin �=�− Ci(�)] (21)

where �=0:642� and Ci(�) is the cosine integral, according to Crow [1]. It can be seen in
Figure 8 that the ampli�cation rate of the computational results are in good agreement with
Crow’s prediction, until after long-time interactions when the troughs of the waves are close
to each other and nonlinear e�ects start to show, as also shown in Figure 7. The ampli�cation
rate is increased towards the end of the simulation due to enhanced mutual induction.
The second case is the same as the �rst one, except that the vortex core radius is 0.25, to

investigate the core size e�ects. The growth rate is plotted in Figure 8 along with the core
radius of 0.1 case for comparison. Figure 9 is the time histories of the wave in the x–y and
x–z planes. It can be seen that the growth rate is lower, therefore the simulation can run
longer and even at the point when the two vortices touch, the simulation can still continue,
contrary to the 0.1 core radius case where the simulation has to be stopped. This is due
to the fact that the larger core provides a smoothing mechanism that reduces the curvature
when the two vortices are getting closer, which can be seen by comparing Figures 9 and 7.
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Figure 8. Long-wave perturbation amplitude growth histories. The solid line is for the case of k =0:75
and �=0:1 using Equation (20) and the circle symbols are the computed results for the same
case. The dash line is for the case of k =0:75 and �=0:25 using Equation (20) and the square

symbols are the computed results for the same case.

Towards the end of the simulation, the planar standing-wave angle is also close to 60◦. This
means in unstable cases, the standing wave angles are controlled by mutual inductions and
are independent of the core size.

5. SHORT-WAVE SINUSOIDAL PERTURBATIONS

The simulation conditions for the short-wave cases are the same as those of long-wave cases,
except the wave number, k, is 7, which is corresponding to a wavelength of 0.898. The same
two core radius sizes in the long-wave cases are considered, that is, 0.1 and 0.25. Figures 10
and 11 show the time histories of the disturbance development for the two short-wave cases
in the x–y and x–z planes. For the purpose of clarity of the graphs, only a section of waves
in −56x65 is plotted, although the simulation domain is still −4�6x64�.
Figure 10(a) is the initial vortical curve shape and it shows that the sinusoidal disturbances

in the y direction is in phase of the disturbances in the z direction. When it reaches t=4
(Figure 10(b)), the amplitude in the y direction grows about 50 per cent, from 0.05 to 0.075,
while the amplitude in the z direction reduces to 0.014, resulting in a planar standing-wave
angle of 11◦. The disturbances are still in phase between the two directions. At t=10, the
disturbances in the two directions are out of phase. The amplitude in the y direction is
about 0.056, and the amplitude in the z direction is 0.042, which gives a planar standing-
wave angle of −36◦. At t=14, the disturbances are still out of phase. The amplitude in the
y direction is reduced back to about 0.017, while the amplitude in the z direction grows to
0.062. The planar standing-wave angle is then −75◦. At t=18, the amplitude of the y-direction
disturbance becomes 0.027, and the z-direction amplitude is about 0.14. The two disturbances
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(a) (b)

(d)(c)

(e) (f)

Figure 9. Long-wave perturbation development histories for the case of k =0:75 and �=0:25. The solid
curve is for the y-direction component and the dashed curve is for the z-direction component. (a) t=0,

(b) t=4, (c) t=10, (d) t=14, (e) t=16, (f) t=20.

are in phase. The planar standing-wave angle is now 80◦, or more precisely, −100◦, since the
y-direction disturbance is switched 180◦. The disturbances keep in phase at t=20, with the
amplitudes in the y and z directions approximately equal to 0.046 and 0.052, respectively,
therefore the planar standing-wave angle is 50◦, or −130◦. The time change of the planar
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(a) (b)

(d)(c)

(e) (f)

Figure 10. Short-wave perturbation development histories for the case of k =7 and �=0:1. The solid
curve is for the y-direction component and the dashed curve is for the z-direction component. (a) t=0,

(b) t=4, (c) t=10, (d) t=14, (e) t=18, (f) t=20.

standing-wave angle, �, versus time is plotted in Figure 12. It can be seen that the average
angular speed of the disturbance rotation is about 8:6◦ per unit time. The rotational direction
is clockwise, which is in the opposite direction of the vortex circulation. It should be noted
that in unstable cases, the planar standing-wave angle asymptotes to a certain value and the
wave does not rotate.
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Figure 11. Short-wave perturbation development histories for the case of k =7 and �=0:25. The
solid curve is for the y-direction component and the dashed curve is for the z-direction component.

(a) t=2, (b) t=4, (c) t=10, (d) t=14.

The behaviour in Figures 10(a)–(f) shows that the vortex pair is neutrally stable, since
there is no mechanism to dampen the disturbances. The disturbances rotate in the opposite
sense to the rotation of the vortex. The self-induction is dominant over the mutual induc-
tion caused by the other vortex. The only signi�cant e�ect from the mutual induction is the
descent of the vortex pair. The descending speed is 1.56, approximately equal to the descend-
ing speed of an unperturbed vortex pair. Those results are in agreement with Crow’s linear
analysis.
Figure 11 is a case for unstable short-wave perturbations. The size of core radius is 0.25,

resulting in k�=1:75, which is close to the zero self rotation according to the dispersion
relation in Figure 5. Therefore, it is a short-wave unstable case. In Figure 11, the y- and
z-direction components of the waves are in phase all the time. The planar standing-wave
angle remains approximately 45◦, contrary to the long-wave unstable cases where the planar
standing-wave angle becomes close to 60◦. Because of the growth of the wave amplitude, the
simulation was terminated at t=14, since peculiar wave shapes emerge due to the overlapping
of the vortex with its symmetry image after this time level. The amplitude growth history
was calculated using the same de�nition in Equation (19) and is plotted in Figure 13. At this
wave length and core size, Crow’s analytical result, Equation (20), does not apply since the
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Figure 12. Planar standing-wave angle versus time for the short-wave stable case.
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Figure 13. Computed short-wave perturbation amplitude growth history
for the case of k =7 and �=0:25.

ampli�cation rate calculated from that equation is imaginary. Therefore, there is no counter-
part of Crow’s results plotted. It can be seen that the growth rate is almost as high as the
long-wave cases, in comparison with Figure 8.
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6. COMBINED LONG- AND SHORT-WAVE PERTURBATIONS

The long-wave (k1 = 0:75) and short-wave (k2 = 7) perturbations in Sections 4 and 5 are
combined to study the e�ects when both wave numbers appear at the same time in the
perturbations. The two core sizes (0.1 and 0.25) are also selected, at which the long-wave
cases are unstable. For the short waves, one is stable (�=0:1) and the other is unstable
(�=0:25). The simulation conditions are the same as in Sections 4 and 5, with the initial
perturbations speci�ed as

D= am1 sin(k1x) + am2 sin(k2x) (22)

where the amplitudes of each wave, am1 and am2, are chosen as 0.05 and 0.005, respectively.
The perturbation development histories for the case of �=0:1 are shown in Figure 14. It

can be seen that the instability of the long-wave perturbations does not change the stability
behaviour of the short-wave part, and vice versa (by comparing Figures 14 and 7). However,
in the case when both the long- and short-wave perturbations are unstable, which is shown in
Figure 15, the growth rate of the peak is much higher, in comparison with Figure 9, in the
portion of the wave that is close to the image vortex (the image vortex is at the other side of
y=0). The short-wave portion that is far away from the image vortex has much weaker mutual
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Figure 14. Perturbation development histories for combined long- and short-wave perturbations for the
case of k1 = 0:75, k2 = 7 and �=0:1. (a) t=0, (b) t=4, (c) t=10, (d) t=14.
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Figure 15. Perturbation development histories for combined long- and short-wave perturbations for the
case of k1 = 0:75, k2 = 7 and �=0:25. (a) t=2, (b) t=4, (c) t=10, (d) t=14.

induction than the portion near it. Therefore, the ampli�cation rate is enhanced by the long-
wave instability which causes much closer separation at those locations. On the other hand, the
long-wave instability causes some portion of the short waves farther away from the in�uence
of the image vortex and that portion shows very little growth of short-wave instability. That
means that the instability, which is caused by the mutual induction of the two vortices in
the vortex pair, can be ampli�ed or reduced at di�erent axial locations by superimposing
another unstable mode perturbations. These e�ects are obviously non-linear which are due to
the interaction between the two modes, in addition to the non-linear e�ects of each mode
itself by having asymmetric wave ampli�cation (with respect to the initial mean position of
the vortex at y=0:5). The experiment by Leweke and Williamson [12] also showed larger
short-wave ampli�cation in the portion of the waves in which the stronger mutual induction is
due to the closeness of the two vortices caused by the long-wave instability. They explained
the mechanism of such combined instability using elliptic streamline theory.
The enhancement and weakening of unstable short waves by unstable long waves may seem

to be intuitive, in the sense that the closeness of the two vortices increases the mutual induction
thus enhances the instability, and the separation of the two vortices reduces the ampli�cation
of the instability. However, the fact that the long-wave instability has no in�uence on the
superimposed stable short waves is perplexing. It is noticed that the vortex core size is
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characterized by the separation of the two vortices. Therefore, when the separation distance
is reduced 2.5 times, the relative core size is increased 2.5 times. That is, if the original
core size is �=0:1 at the separation of b=1, which is the stable short-wave case here at
the initial condition, then when the long waves grow to a point where some portion of the
separation of the two vortices is 0.4, the relative core size becomes 2.5, which is in the
short-wave unstable regime. Yet the instability of short waves does not occur, according to
Figure 14. One could argue that the portion of close separation (which is about 0.4 of the
initial span of the vortex pair) was only several short-wave-lengths long. The Crow instability
requires mutual induction from theoretically in�nitely long vortices. Therefore the short-wave
instability would not show. Based on that argument, we can only deduce that although the
closeness of the two vortices due to instability of long-wave perturbations can create a local
environment for short-wave instability, the latter does not occur in the simulation, because of
the limited mutual induction from the relatively short lengths of the close part of the other
vortex.

7. CONCLUSIONS

The vortex method developed here has made use of analytical integrations to reduce the errors
caused by vortex segment stretching and shrinking. End e�ects have been successfully reduced
by using the nearest-neighbour-image method. In the selected validation cases, the descending
speeds are accurately matched for a vortex ring and a pair of straight-line, counter-rotating
vortices. The unstable, long-wave perturbation growth rates agree quantitatively with Crow’s
analysis until towards the end of the simulations when the two vortices are close, causing
slightly faster growth rates. The planar standing-wave angle becomes 60◦ after initial time
marching. It is controlled by mutual inductions and is independent of the vortex core size.
Simulation results of the vortex pair perturbed by short-wave perturbations have shown that
for a stable case, the vortex pair is neutrally stable and the disturbances rotate around each
vortex centreline in the opposite sense of the vortex circulation, which is in agreement with
Crow’s theory. A zero self-rotation frequency at k�=1:72 has been found in zeroth radial
mode for bending in the dispersion relation simulation for a single vortex with the cut-o�
function used in this paper. A short-wave perturbation case has then been simulated near the
zero self-rotation and instability has been detected. The growth rate is comparable with its
long-wave counter-part, however, with a planar standing-wave angle of 45◦. The combined
long- and short-wave perturbation cases have shown that if the long-wave mode is unstable
but the short-wave mode is stable, no signi�cant coupling e�ects occur. However, when both
the modes are unstable, a non-linear e�ect occurs. The growth rate of the peak is much higher,
in comparison with the single long-wave mode case, in the portions of the waves that are
close to the image vortex at the other side of the symmetry axis.
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